A Rough Differentiable Function

نویسنده

  • BERND KIRCHHEIM
چکیده

A real-valued continuously differentiable function f on the unit interval is constructed such that ∞ ∑ k=1 βf (x, 2 −k) = ∞ holds for every x ∈ [0, 1]. Here βf (x, 2−k) measures the distance of f to the best approximating linear function at scale 2−k around x.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New inequalities for a class of differentiable functions

In this paper, we use the Riemann-Liouville fractionalintegrals to establish some new integral inequalities related toChebyshev's functional in the case of two differentiable functions.

متن کامل

Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz‎. ‎Necessary optimality conditions and regularity conditions are given‎. ‎Our approach are based on the Michel-Penot subdifferential.

متن کامل

Sensitivity of rough differential equations∗

In the context of rough paths theory, we study the regularity of the Itô map with respect to the starting point, the coefficients and perturbation of the driving rough paths. In particular, we show that the Itô map is differentiable with a Hölder or Lipschitz continuous derivatives. With respect to the current literature on the subject, our proof rely on perturbation of linear Rough Differentia...

متن کامل

Rough Volterra equations 2: Convolutional generalized integrals

We define and solve Volterra equations driven by a non-differentiable signal, by means of a variant of the rough path theory allowing to handle generalized integrals weighted by an exponential coefficient. The results are applied to a standard rough path x = (x,x) ∈ C 2 (R)×C 2γ 2 (R), with γ > 1/3, which includes the case of fractional Brownian motion with Hurst index H > 1/3.

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008